
www.manaraa.com

Experiences with the
Amoeba Distributed Operating System

Andrew S. Tanenbaum
Robbert van Renesse1

Hans van Staveren
Gregory J. Sharp

Dept. of Mathematics and Computer Science
Vrije Universiteit

De Boelelaan 1081
1081 HV Amsterdam, The Netherlands

Internet: ast@cs.vu.nl, cogito@cs.vu.nl, sater@cs.vu.nl, gregor@cs.vu.nl

Sape J. Mullender2

Jack Jansen
Guido van Rossum

Centrum voor Wiskunde en Informatica
Kruislaan 413

1098 SJ Amsterdam, The Netherlands
Internet: sape@cwi.nl, jack@cwi.nl, guido@cwi.nl

The Amoeba distributed operating system has been in development and use for
over eight years now. In this paper we describe the present system and our
experience with it—what we did right, but also what we did wrong. Among
the things done right were basing the system on objects, using a single uniform
mechanism (capabilities) for naming and protecting them in a location
independent way, and designing a completely new, and very fast file system.
Among the things done wrong were having threads not be pre-emptable, ini-
tially building our own homebrew window system, and not having a multicast
facility at the outset.

Computing Reviews categories: C.2.4, D.4

Keywords: Operating systems, Distributed systems, Distributed operating sys-
tems, Computer networks, Experience

Descriptors: Network operating systems, Distributed applications, Distributed
systems, Measurements

General terms: Design, Experimentation, Performance

� ���������������������������

1. This research was supported in part by the Netherlands Organization for Scientific Research
(N.W.O.) under grant 125-30-10.

www.manaraa.com

- 2 -

INTRODUCTION

The Amoeba project is a research effort aimed at understanding how to connect multiple com-
puters together in a seamless way [15, 16, 26, 28, 32] The basic idea is to provide the users
with the illusion of a single powerful timesharing system, when, in fact, the system is imple-
mented on a collection of machines, potentially distributed among several countries. This
research has led to the design and implementation of the Amoeba distributed operating system,
which is being used as a prototype and vehicle for further research. In this paper we will
describe the current state of the system (Amoeba 4.0), and tell some of the lessons we have
learned designing and using it over the past eight years. We will also discuss how this experi-
ence has influenced our plans for the next version, Amoeba 5.0.

Amoeba was originally designed and implemented at the Vrije Universiteit in Amster-
dam, and is now being jointly developed there and at the Centre for Mathematics and Com-
puter Science, also in Amsterdam. The chief goal of this work is to build a distributed system
that is transparent to the users. This concept can best be illustrated by contrasting it with a
network operating system, in which each machine retains its own identity. With a network
operating system, each user logs into one specific machine, his home machine. When a pro-
gram is started, it executes on the home machine, unless the user gives an explicit command to
run it elsewhere. Similarly, files are local unless a remote file system is explicitly mounted or
files are explicitly copied. In short, the user is clearly aware that multiple independent com-
puters exist, and must deal with them explicitly.

In a transparent distributed system, in contrast, users effectively log into the system as a
whole, and not to any specific machine. When a program is run, the system, not the user,
decides the best place to run it. The user is not even aware of this choice. Finally, there is a
single, system wide file system. The files in a single directory may be located on different
machines possibly in different countries. There is no concept of file transfer, uploading or
downloading from servers, or mounting remote file systems. A file’s position in the directory
hierarchy has no relation to its location.

The remainder of this paper will describe Amoeba and the lessons we have learned from
building it. In the next section, we will give a technical overview of Amoeba as it currently
stands. Since Amoeba uses the client-server model, we will then describe some of the more
important servers that have been implemented so far. This is followed by a description of how
wide-area networks are handled. Then we will discuss a number of applications that run on
Amoeba. Measurements have shown Amoeba to be fast, so we will present some of our data.
After that, we will discuss the successes and failures that we have encountered, so that others
may profit from those ideas that have worked out well and avoid those that have not. Finally
we conclude with a very brief comparision between Amoeba and other systems.

TECHNICAL OVERVIEW OF AMOEBA

Before describing the software, it is worth saying something about the system architecture on
which Amoeba runs.

� ���������������������������

2. The research at CWI was supported in part by a grant from Digital Equipment Corporation.

www.manaraa.com

- 3 -

System Architecture

The Amoeba architecture consists of four principal components, as shown in Fig. 1. First are
the workstations, one per user, on which users can carry out editing and other tasks that require
fast interactive response. The workstations are all diskless, and are primarily used as intelli-
gent terminals that do window management, rather than as computers for running complex
user programs. We are currently using Sun-3s and VAXstations as workstations. In the next
generation of hardware we may also use X-terminals.

Processor Pool Workstations

Specialized servers
(file, data base, etc)

WAN

Gateway

Fig. 1. The Amoeba architecture.

Second are the pool processors, a group of CPUs that can be dynamically allocated as
needed, used, and then returned to the pool. For example, the make command might need to
do six compilations, so six processors could be taken out of the pool for the time necessary to
do the compilation and then returned. Alternatively, with a five-pass compiler, 5 x 6 = 30 pro-
cessors could be allocated for the six compilations, gaining even more speedup. Many appli-
cations, such as heuristic search in AI applications (e.g., playing chess), use large numbers of
pool processors to do their computing. We currently have 48 single board VME-based com-
puters using the 68020 and 68030 CPUs. We also have 10 VAX CPUs forming an additional
processor pool.

Third are the specialized servers, such as directory servers, file servers, data base servers,
boot servers, and various other servers with specialized functions. Each server is dedicated to
performing a specific function. In some cases, there are multiple servers that provide the same
function, for example, as part of the replicated file system.

Fourth are the gateways, which are used to link Amoeba systems at different sites and
different countries into a single, uniform system. The gateways isolate Amoeba from the
peculiarities of the protocols that must be used over the wide-area networks.

All the Amoeba machines run the same kernel, which primarily provides multithreaded
processes, communication services, I/O, and little else. The basic idea behind the kernel was
to keep it small, to enhance its reliability, and to allow as much as possible of the operating
system to run as user processes (i.e., outside the kernel), providing for flexibility and experi-
mentation.

www.manaraa.com

- 4 -

Objects and Capabilities

Amoeba is an object-based system. The system can be viewed as a collection of objects, on
each of which there is a set of operations that can be performed. For a file object, for example,
typical operations are reading, writing, appending, and deleting. The list of allowed operations
is defined by the person who designs the object and who writes the code to implement it. Both
hardware and software objects exist.

Associated with each object is a capability [8] a kind of ticket or key that allows the
holder of the capability to perform some (not necessarily all) operations on that object. A user
process might, for example, have a capability for a file that permitted it to read the file, but not
to modify it. Capabilities are protected cryptographically to prevent users from tampering
with them.

Each user process owns some collection of capabilities, which together define the set of
objects it may access and the type of operations he may perform on each. Thus capabilities
provide a unified mechanism for naming, accessing, and protecting objects. From the user’s
perspective, the function of the operating system is to create an environment in which objects
can be created and manipulated in a protected way.

This object-based model visible to the users is implemented using remote procedure call
[5] Associated with each object is a server process that manages the object. When a user pro-
cess wants to perform an operation on an object, it sends a request message to the server that
manages the object. The message contains the capability for the object, a specification of the
operation to be performed, and any parameters the operation requires. The user, known as the
client , then blocks. After the server has performed the operation, it sends back a reply mes-
sage that unblocks the client. The combination of sending a request message, blocking, and
accepting a reply message forms the remote procedure call, which can be encapsulated using
stub routines, to make the entire remote operation look like a local procedure call (although
see [27]).

The structure of a capability is shown in Fig. 2. It is 128 bits long and contains four
fields. The first field is the server port , and is used to identify the (server) process that
manages the object. It is in effect a 48-bit random number chosen by the server.

Server
port

Object
number

Rights Check
field

48 24 8 48

Fig. 2. A capability. The numbers are the current sizes in bits.

The second field is the object number , which is used by the server to identify which of its
objects is being addressed. Together, the server port and object number uniquely identify the
object on which the operation is to be performed.

The third field is the rights field, which contains a bit map telling which operations the
holder of the capability may perform. If all the bits are 1s, all operations are allowed. How-
ever, if some of the bits are 0s, the holder of the capability may not perform the corresponding
operations. Since the operations are usually coarse grained, 8 bits is sufficient.

To prevent users from just turning all the 0 bits in the rights field into 1 bits, a crypto-
graphic protection scheme is used. When a server is asked to create an object, it picks an

www.manaraa.com

- 5 -

available slot in its internal tables, puts the information about the object in there along with a
newly generated 48-bit random number. The index into the table is put into the object number
field of the capability, the rights bits are all set to 1, and the newly-generated random number
is put into the check field of the capability. This is an owner capability , and can be used to
perform all operations on the object.

The owner can construct a new capability with a subset of the rights by turning off some
of the rights bits and then XOR-ing the rights field with the random number in the check field.
The result of this operation is then run through a (publicly-known) one-way function to pro-
duce a new 48-bit number that is put in the check field of the new capability.

The key property required of the one-way function, f , is that given the original 48-bit
number, N (from the owner capability) and the unencrypted rights field, R , it is easy to com-
pute C = f(N XOR R), but given only C it is nearly impossible to find an argument to f that
produces the given C . Such functions are known [9].

When a capability arrives at a server, the server uses the object field to index into its
tables to locate the information about the object. It then checks to see if all the rights bits are
on. If so, the server knows that the capability is (or is claimed to be) an owner capability, so it
just compares the original random number in its table with the contents of the check field. If
they agree, the capability is considered valid and the desired operation is performed.

If some of the rights bits are 0, the server knows that it is dealing with a derived capabil-
ity, so it performs an XOR of the original random number in its table with the rights field of
the capability. This number is then run through the one-way function. If the output of the
one-way function agrees with the contents of the check field, the capability is deemed valid,
and the requested operation is performed if its rights bit is set to 1. Due to the fact that the
one-way function cannot be inverted, it is not possible for a user to ‘‘decrypt’’ a capability to
get the original random number in order to generate a false capability with more rights.

Remote Operations

The combination of a request from a client to a server and a reply from a server to a client is
called a remote operation . The request and reply messages consist of a header and a buffer.
Headers are 32 bytes, and buffers can be up to 30 kilobytes. A request header contains the
capability of the object to be operated on, the operation code, and a limited area (8 bytes) for
parameters to the operation. For example, in a write operation on a file, the capability identi-
fies the file, the operation code is write, and the parameters specify the size of the data to be
written, and the offset in the file. The request buffer contains the data to be written. A reply
header contains an error code, a limited area for the result of the operation (8 bytes), and a
capability field that can be used to return a capability (e.g., as the result of the creation of an
object, or of a directory search operation).

The primitives for doing remote operations are listed below:

get� request(req-header, req-buffer, req-size)
put� reply(rep-header, rep-buffer, rep-size)
do� operation(req-header, req-buffer, req-size, rep-header, rep-buffer, rep-size)

When a server is prepared to accept requests from clients, it executes a get� request primitive,
which causes it to block. When a request message arrives, the server is unblocked and the for-
mal parameters of the call to get� request are filled in with information from the incoming
request. The server than performs the work and sends a reply using put� reply.

www.manaraa.com

- 6 -

On the client side, to invoke a remote operation, a process uses do� operation. This action
causes the request message to be sent to the server. The request header contains the capability
of the object to be manipulated and various parameters relating to the operation. The caller is
blocked until the reply is received, at which time the three rep- parameters are filled in and a
status returned. The return status of do� operation can be one of three possibilities:

1. The request was delivered and has been executed.
2. The request was not delivered or executed (e.g., server was down).
3. The status is unknown.

The third case can arise when the request was sent (and possibly even acknowledged), but no
reply was forthcoming. This situation can arise if a server crashes part way through the
remote operation. Under all conditions of lost messages and crashed servers, Amoeba guaran-
tees that messages are delivered at most once. If status 3 is returned, it is up to the application
or run time system to do its own fault recovery.

Remote Procedure Calls

A remote procedure call actually consists of more than just the request/reply exchange
described above. The client has to place the capability, operation code, and parameters in the
request buffer, and on receiving the reply it has to unpack the results. The server has to check
the capability, extract the operation code and parameters from the request, and call the
appropriate procedure. The result of the procedure has to be placed in the reply buffer. Plac-
ing parameters or results in a message buffer is called marshalling , and has a non-trivial cost.
Different data representations in client and server also have to be handled. All of these steps
must be carefully designed and coded, lest they introduce unacceptable overhead.

To hide the marshalling and message passing from the users, Amoeba uses stub routines
[5]. For example, one of the file system stubs might start with:

int read� file(file � cap, offset, nbytes, buffer, bytes� read)
capability� t *file� cap;
long offset;
long *nbytes;
char *buffer;
long *bytes� read;

This call reads nbytes starting at offset from the file identified by file� cap into buffer. It
returns the number of bytes actually read in bytes� read. The function itself returns 0 if it exe-
cuted correctly or an error code otherwise. A hand-written stub for this code is simple to con-
struct: it will produce a request header containing file� cap, the operation code for read� file,
offset, and nbytes, and invoke the remote operation:

do� operation(req � hdr, req� buf, req� bytes, rep� hdr, buf, rep� bytes);

Automatic generation of such a stub from the procedure header above is impossible.
Some essential information is missing. The author of the handwritten stub uses several pieces
of derived information to do the job.

1. The buffer is used only to receive information from the file server; it is an output parame-
ter, and should not be sent to the server.

www.manaraa.com

- 7 -

2. The maximum length of the buffer is given in the nbytes parameter. The actual length of
the buffer is the returned value if there is no error and zero otherwise.

3. File� cap is special; it defines the service that must carry out the remote operation.

4. The stub generator does not know what the server’s operation code for read� file is. This
requires extra information. But, to be fair, the human stub writer needs this extra infor-
mation too.

In order to be able to do automatic stub generation, the interfaces between client and
servers have to contain the information listed above, plus information about type representa-
tion for all language/machine combinations used. In addition, the interface specifications have
to have an inheritance mechanism which allows a lower-level interface to be shared by several
other interfaces. The read� file operation, for instance, will be defined in a low-level interface
which is then inherited by all file-server interfaces, the terminal-server interface, and the
segment-server interface.

AIL (Amoeba Interface Language) is a language in which the extra information for the
generation of efficient stubs can be specified, so that the AIL compiler can produce stub rou-
tines automatically [33]. The read� file operation could be part of an interface (called class in
AIL) whose definition could look something like this:

class simple� file� server [1000..1999] {
read� file(*, in unsigned offset, in out unsigned nbytes,

out char buffer[nbytes:NBYTES]);
write � file(*, . . .);

};

From this specification, AIL can generate the client stub of the example above with the correct
marshalling code. It can also generate the server main loop, containing the marshalling code
corresponding to the client stubs. The AIL specification tells AIL that the operation codes for
the simple� file� server can be allocated in the range 1000 to 1999; it tells which parameters are
input parameters to the server and which are output parameters from the server, and it tells that
the length of buffer is at most NBYTES (which must be a constant) and that the actual length is
nbytes.

The Bullet File Server, one of the file servers operational in Amoeba, inherits this inter-
face, making it part of the Bullet File Server interface:

class bullet� server [2000..2999] {
inherit simple� file� server;
creat� file(*, . . .);

};

AIL supports multiple inheritance so the Bullet server interface can inherit both the simple file
interface and, for instance, a capability management interface for restricting rights on capabili-
ties.

Currently, AIL generates stubs in C, but Modula stubs and stubs in other languages are
planned. AIL stubs have been designed to deal with different data representations — such as
byte order and floating-point representation — on client and server machines.

www.manaraa.com

- 8 -

Threads

A process in Amoeba consists of one or more threads that run in parallel. All the threads of a
process share the same address space, but each one has a dedicated portion of that address
space for use as its private stack, and each one has its own program counter. From the
programmer’s point of view, each thread is like a traditional sequential process, except that the
threads of a process can communicate using shared memory. In addition, the threads can
(optionally) synchronize with each other using mutexes or semaphores.

The purpose of having multiple threads in a process is to increase performance through
parallelism, and still provide a reasonable semantic model to the programmer. For example, a
file server could be programmed as a process with multiple threads. When a request comes in,
it can be given to some thread to handle. That thread first checks an internal (software) cache
to see if the needed data are present. If not, it performs an RPC with a remote disk server to
acquire the data.

While waiting for the reply from the disk, the thread is blocked and will not be able to
handle any other requests. However, new requests can be given to other threads in the same
process to work on while the first thread is blocked. In this way, multiple requests can be han-
dled simultaneously, while allowing each thread to work in a sequential way. The point of
having all the threads share a common address space is to make it possible for all of them to
have direct access to a common cache, something that is not possible if each thread is its own
address space.

The scheduling of threads within a process is done by code within the process itself.
When a thread blocks, either because it has no work to do (i.e., on a get� request) or because it
is waiting for a remote reply (i.e., on a do� operation), the internal scheduler is called, the
thread is blocked, and a new thread can be run. Threads are thus effectively co-routines.
Threads are not pre-empted, that is, the currently running thread will not be stopped because it
has run too long. This decision was made to avoid race conditions. A thread need not worry
that when it is halfway through updating some critical shared table it will be suddenly stopped
and some other thread will start up and try to use the table. It is assumed that the threads in a
process were all written by the same programmer and are actively co-operating. That is why
they are in the same process. Thus the interaction between two threads in the same process is
quite different from the interaction between two threads in different processes, which may be
hostile to one another and for which hardware memory protection is required and used. Our
evaluation of this approach is discussed later.

SERVERS

The Amoeba kernel, as described above, essentially handles communication and some process
management, and little else. The kernel takes care of sending and receiving messages,
scheduling processes, and some low-level memory management. Everything else is done by
user processes. Even capability management is done entirely in user space, since the crypto-
graphic technique discussed earlier makes it virtually impossible for users to generate counter-
feit capabilities.

All of the remaining functions that are normally associated with a modern operating sys-
tem environment are performed by servers, which are just ordinary user processes. The file
system, for example, consists of a collection of user processes. Users who are not happy with
the standard file system are free to write and use their own. This situation can be contrasted

www.manaraa.com

- 9 -

with a system like UNIX,† in which there is a single file system that all applications must use,
no matter how inappropriate it may be. In [24] for example, the numerous problems that UNIX
creates for database systems are described at great length.

In the following sections we will discuss the Amoeba memory server, process server, file
server, and directory server, as examples of typical Amoeba servers. Many others exist as
well.

The Memory and Process Server

In many applications, processes need a way to create subprocesses. In UNIX, a subprocess is
created by the fork primitive, in which an exact copy of of the original process is made. This
process can then run for a while, attending to housekeeping activities, and then issue an exec
primitive to overwrite its core image with a new program.

In a distributed system, this model is not attractive. The idea of first building an exact
copy of the process, possibly remotely, and then throwing it away again shortly thereafter is
inefficient. Consequently, Amoeba uses a different strategy. The key concepts are segments
and process descriptors, as described below.

A segment is a contiguous chunk of memory that can contain code or data. Each segment
has a capability that permits its holder to perform operations on it, such as reading and writing.
A segment is somewhat like an in-core file, with similar properties.

A process descriptor is a data structure that provides information about a stunned pro-
cess, that is, a process not yet started or one being debugged or migrated. It has four com-
ponents. The first describes the requirements for the system where the process must run: the
class of machines, which instruction set, minimum available memory, use of special instruc-
tions such as floating point, and several more. The second component describes the layout of
the address space: number of segments and, for each segment, the size, the virtual address,
how it is mapped (e.g., read only, read-write, code/data space), and the capability of a file or
segment containing the contents of the segment. The third component describes the state of
each thread of control: stack pointer, stack top and bottom, program counter, processor status
word, and registers. Threads can be blocked on certain system calls (e.g., get� request); this
can also be described. The fourth component is a list of ports for which the process is a server.
This list is helpful to the kernel when it comes to buffering incoming requests and replying to
port-locate operations.

A process is created by executing the following steps.

1. Get the process descriptor for the binary from the file system.

2. Create a local segment or a file and initialize it to the initial environment of the new pro-
cess. The environment consists of a set of named capabilities (a primitive directory, as it
were), and the arguments to the process (in Unix terms, argc and argv).

3. Modify the process descriptor to make the first segment the environment segment just
created.

4. Send the process descriptor to the machine where it will be executed.

� ���������������������������

† UNIX is a Registered Trademark of AT&T Bell Laboratories.

www.manaraa.com

- 10 -

When the processor descriptor arrives at the machine where the process will run, the
memory server there extracts the capabilities for the remote segments from it, and fetches the
code and data segments from wherever they reside by using the capabilities to peform READ
operations in the usual way. In this manner, the physical locations of all the machines
involved are irrelevant.

Once all the segments have been filled in, the process can be constructed and the process
started. A capability for the process is returned to the initiator. This capability can be used to
kill the process, or it can be passed to a debugger to stun (suspend) it, read and write its
memory, and so on.

The File Server

As far as the system is concerned, a file server is just another user process. Consequently, a
variety of file servers have been written for Amoeba in the course of its existence. The first
one, FUSS (Free University Storage System) [17] was designed as an experiment in managing
concurrent access using optimistic concurrency control. The current one, the bullet server was
designed for extremely high performance [29, 31, 32]. It is this one that we will describe
below.

The decrease in the cost of disk and RAM memories over the past decade has allowed us
to use a radically different design from that used in UNIX and most other operating systems.
In particular, we have abandoned the idea of storing files as a collection of fixed size disk
blocks. All files are stored contiguously, both on the disk and in the server’s main memory.
While this design wastes some disk space and memory due to fragmentation overhead, we feel
that the enormous gain in performance (described below) more than offsets the small extra
cost of having to buy, say, an 800 MB disk instead of a 500 MB disk in order to store 500 MB
worth of files.

The bullet server is an immutable file store, with as principal operations read-file and
create-file. (For garbage collection purposes there is also a delete-file operation.) When a
process issues a read-file request, the bullet server can transfer the entire file to the client in a
single RPC, unless it is larger than the maximum size (30,000 bytes), in which case multiple
RPCs are needed. The client can then edit or otherwise modify the file locally. When it is fin-
ished, the client issues a create-file RPC to make a new version. The old version remains
intact until explicitly deleted or garbage collected. Note that different versions of a file have
different capabilities, so they can co-exist, making it straightforward to implement source code
control systems.

The files are stored contiguously on disk, and are cached in the file server’s memory
(currently 12 Mbytes). When a requested file is not available in this memory, it is loaded from
disk in a single large DMA operation and stored contiguously in the cache. (Unlike conven-
tional file systems, there are no ‘‘blocks’’ used anywhere in the file system.) In the create-file
operation one can request the reply before the file is written to disk (for speed), or afterwards
(to know that it has been successfully written).

When the bullet server is booted, the entire ‘‘i-node table’’ is read into memory in a sin-
gle disk operation and kept there while the server is running. When a file operation is
requested, the object number field in the capability is extracted, which is an index into this
table. The entry thus located gives the disk address as well as the cache address of the con-
tiguous file (if present). No disk access is needed to fetch the ‘‘i-node’’ and at most one disk

www.manaraa.com

- 11 -

access is needed to fetch the file itself, if it is not in the cache. The simplicity of this design
trades off some space for high performance.

The Directory Server

The bullet server does not provide any naming services. To access a file, a process must pro-
vide the relevant capability. Since working with 128-bit binary numbers is not convenient for
people, we have designed and implemented a directory server to manage names and capabili-
ties.

The directory server manages multiple directories, each of which is a normal object.
Stripped down to its barest essentials, a directory maps ASCII strings onto capabilities. A pro-
cess can present a string, such as a file name, to the directory server, and the directory server
returns the capability for that file. Using this capability, the process can then access the file.

In UNIX terms, when a file is opened, the capability is retrieved from the directory server
for use in subsequent read and write operations. After the capability has been fetched from the
directory server, subsequent RPCs go directly to the server that manages the object. The direc-
tory server is no longer involved.

It is important to realize that the directory server simply provides a mapping function.
The client provides a capability for a directory (in order to specify which directory to search)
and a string, and the directory server looks up the string in the specified directory and returns
the capability associated with the string. The directory server has no knowledge of the kind of
object that the capability controls.

In particular, it can be a capability for another directory on the same or a different direc-
tory server, a file, a mailbox, a database, a process capability, a segment capability, a capabil-
ity for a piece of hardware, or anything else. Furthermore, the capability may be for an object
located on the same machine, a different machine on the local network, or a capability for an
object in a foreign country. The nature and location of the object is completely arbitrary.
Thus the objects in a directory need not all be on the same disk, for example, as is the case in
many systems that support ‘‘remote mount’’ operations.

Since a directory may contain entries for other directories, it is possible to build up arbi-
trary directory structures, including trees and graphs. As an optimization, it is possible to give
the directory server a complete path, and have it follow it as far as it can, returning a single
capability at the end.

Actually, directories are slightly more general than just simple mappings. It is commonly
the case that the owner of a file may want to have the right to perform all operations on it, but
may want to permit others read-only access. The directory server supports this idea by struc-
turing directories as a series of rows, one per object, as shown in Fig. 3

The first column gives the string (e.g., the file name). The second column gives the capa-
bility that goes with that string. The remaining columns each apply to one user class. For
example, one could set up a directory with different access rights for the owner, the owner’s
group, and others, as in UNIX, but other combinations are also possible.

The capability for a directory specifies the columns to which the holder has access as a
bit map in part of the rights field (e.g., 3 bits). Thus in the above example, the bits 001 might
specify access to only the Other column. Earlier we discussed how the rights bits are pro-
tected from tampering by use of the check field.

www.manaraa.com

- 12 -

� ���
Object name Capability Owner Group Other� ���

. cap1 11111 11000 10000� ���
games� dir cap2 11111 10000 10000� ���

paper.t cap3 11111 00000 00000� ���
prog.c cap4 11111 11100 10000� ���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Fig. 3. A directory with three user classes, four entries, and five rights.

To see how how multiple columns are used, consider a typical access. The client pro-
vides a capability for a directory (implying a column) and a string. The string is looked up in
the directory to find the proper row. Next, the column is checked against the (singleton) bit
map in the rights field, to see which column should be used. Remember that the cryptographic
scheme described in Sec. 2.2 prevents users from modifying the bit map, hence accessing a
forbidden column.

Then the entry in the selected row and column is extracted. Conceptually this is just a
capability, with the proper rights bits turned on. However, to avoid having to store many capa-
bilities, few of which are ever used, an optimization is made, and the entry is just a bit map, b .
The directory server can then ask the server that manages the object to return a new capability
with only those rights in b . This new capability is returned to the user and also cached for
future use, to reduce calls to the server.

The directory server supports a number of operations on directory objects. These includ-
ing looking up capabilities, adding new rows to a directory, removing rows from directories,
listing directories, inquiring about the status of directories and objects, and deleting direc-
tories. There is also provision for performing multiple operations in a single atomic action, to
provide for fault tolerance.

Furthermore, there is also support for handling replicated objects. The capability field in
Fig. 3 can actually hold a set of capabilities for multiple copies of each object. Thus when a
process looks up an object, it can retrieve the entire set of capabilities for all the copies. If one
of the objects is unavailable, the other ones can be tried. The technique is similar to the one
Eden used [20]. In addition, when a new object is installed in a directory, an option is avail-
able to have the directory server itself request copies to be made, and then store all the capabil-
ities, thus freeing the user from this administration.

In addition to supporting replication of user objects, the directory server is itself dupli-
cated. Among other properties, it is possible to install new versions of it by killing off one
instance of it, installing a new version as the replacement, killing off the other (original)
instance, and installing a second replacement also running the new code. In this way bugs can
be repaired without interrupting service.

WIDE-AREA AMOEBA

Amoeba was designed with the idea that a collection of machines on a LAN would be able to
communicate over a wide-area network with a similar collection of remote machines. The key
problem here is that wide-area networks are slow and unreliable, and furthermore use proto-
cols such as X.25, TCP/IP, and OSI, in any event, not RPC. The primary goal of the wide-area

www.manaraa.com

- 13 -

networking in Amoeba has been to achieve transparency without sacrificing performance [30].
In particular, it is undesirable that the fast local RPC be slowed down due to the existence of
wide-area communication. We believe this goal has been achieved.

The Amoeba world is divided up into domains , each domain being an interconnected col-
lection of local area networks. The key aspect of a domain (e.g., a campus), is that broadcasts
done from any machine in the domain are received by all other machines in the domain, but
not by machines outside the domain.

The importance of broadcasting has to do with how ports are located in Amoeba. When a
process does an RPC with a port not previously used, the kernel broadcasts a locate message.
The server responds to this broadcast with its address, which is then used and also cached for
future RPCs.

This strategy is undesirable with a wide-area network. Although broadcast can be simu-
lated using a minimum spanning tree [7] it is expensive and inefficient. Furthermore, not
every service should be available worldwide. For example, a laser printer server in the physics
building at a university in California may not be of much use to clients in New York.

Both of these problems are dealt with by introducing the concept of publishing . When a
service wishes to be known and accessible outside its own domain, it contacts the Service for
Wide-Area Networks (SWAN) and asks that its port be published in some set of domains. The
SWAN publishes the port by doing RPCs with SWAN processes in each of those domains.

When a port is published in a domain, a new process called a server agent is created in
that domain. The process typically runs on the gateway machine, and does a get� request using
the remote server’s port. It is quiescent until its server is needed, at which time it comes to life
and performs an RPC with the server.

Now let us consider what happens when a process tries to locate a remote server whose
port has been published. The process’ kernel broadcasts a locate, which is received by the
server agent. The server agent then builds a message and hands it to a link process on the
gateway machine. The link process forwards it over the wide-area network to the server’s
domain, where it arrives at the gateway, causing a client agent process to be created. This
client agent then makes a normal RPC to the server. The set of processes involved here is
shown in Fig. 4

Wide-area network

Client Gateway Gateway Server

LAN 1 LAN 2

C SSA L L CA

Fig. 4. Wide-area communication in Amoeba involves six processes.

The beauty of this scheme is that it is completely transparent. Neither user processes nor
the kernel know which processes are local and which are remote. The communication
between the client and the server agent is completely local, using the normal RPC. Similarly,
the communication between the client agent and the server is also completely normal. Neither
the client nor the server knows that it is talking to a distant process.

www.manaraa.com

- 14 -

Of course, the two agents are well aware of what is going on, but they are automatically
generated as needed, and are not visible to users. The link processes are the only ones that
know about the details of the wide-area network. They talk to the agents using RPC, but to
each other using whatever protocol the wide-area network requires. The point of splitting off
the agents from the link processes is to completely isolate the technical details of the wide-area
network in one kind of process, and to make it easier to have multiway gateways, which would
have one type of link process for each wide-area network type to which the gateway is
attached.

It is important to note that this design causes no performance degradation whatsoever for
local communication. An RPC between a client and a server on the same LAN proceeds at
full speed, with no relaying of any kind. Clearly there is some performance loss when a client
is talking to a server located on a distant network, but the limiting factor is normally the
bandwidth of the wide-area network, so the extra overhead of having messages being relayed
several times is negligible.

Another useful aspect of this design is its management. To start with, services can only
be published with the help of the SWAN server, which can check to see if the system adminis-
tration wants the port be to published. Another important control is the ability to prevent cer-
tain processes (e.g., those owned by students) from accessing wide-area services, since all such
traffic must pass through the gateways, and various checks can be made there. Finally, the
gateways can do accounting, statistics gathering, and monitoring of the wide-area network.

APPLICATIONS

Amoeba has been used to program a variety of applications. In this section we will describe
several of them, including UNIX emulation, parallel make, traveling salesman, and alpha-beta
search.

UNIX Emulation

One of the goals of Amoeba was to make it useful as a program development environ-
ment. For such an environment, one needs editors, compilers, and numerous other standard
software. It was decided that the easiest way to obtain this software was to emulate UNIX and
then to run UNIX and MINIX [25] compilers and other utilities on top of it.

Using a special set of library procedures that do RPCs with the Amoeba servers, it has
been possible to construct an emulation of the UNIX system call interface — which was
dubbed Ajax — that is good enough that about 100 of the most common utility programs have
been ported to Amoeba. The Amoeba user can now use most of the standard editors, com-
pilers, file utilities and other programs in a way that looks very much like UNIX, although in
fact it is really Amoeba. A session server has been provided to handle state information and
do fork and exec in a UNIX-like way.

Parallel Make

As shown in Figure 1, the hardware on which Amoeba runs contains a processor pool with
several dozen 68020 and 68030 processors. One obvious application for these processors in a
UNIX environment is a parallel version of make [10]. The idea here is that when make

www.manaraa.com

- 15 -

discovers that multiple compilations are needed, they are run in parallel on different proces-
sors.

Although this idea sounds simple, there are several potential problems. For one, to make
a single target file, a sequence of several commands may have to be executed, and some of
these may use files created by earlier ones. The solution chosen is to let each command exe-
cute in parallel, but block when it needs a file being made but not yet fully generated.

Other problems relate to technical limitations of the make program. For example, since it
expects commands to be run sequentially, rather than in parallel, it does not keep track of how
many processes it has forked off, which may exceed various system limits.

Finally, there are programs, such as yacc [11] that write their output on fixed name files,
such as y.tab.c . When multiple yaccs are running in the same directory, they all write to the
same file, thus producing gibberish. All of these problems have been dealt with by one means
or another, as described in [2].

The parallel compilations are directed by a new version of make , called amake . Amake
does not use traditional makefiles. Instead, the user tells it which source files are needed, but
not their dependencies. The compilers have been modified to keep track of the observed
dependencies (e.g., which files they in fact included). After a compilation, this information
goes into a kind of mini-database that replaces the traditional makefile. It also keeps track of
which flags were used, which version of the compiler was used, and other information. Not
having to even think about makefiles, not even automatically generated ones, has been popular
with the users. The overhead due to managing the data base is negligible, but the speedup due
to parallelization depends strongly on the input. When making a program consisting of many
medium-sized files, considerable speedup can be achieved. However, when a program has one
large source file and many small ones, the total time can never be smaller than the compilation
time of the large one.

The Traveling Salesman Problem

In addition to various experiments with the UNIX software, we have also tried programming
some applications in parallel. Typical applications are the traveling salesman problem [13]
and alpha-beta search [14] We briefly describe these below. More details can be found in [3].

In the traveling salesman problem, the computer is given a starting location and a list of
cities to be visited. The idea is to find the shortest path that visits each city exactly once, and
then return to the starting place. Using Amoeba we have programmed this application in
parallel by having one pool processor act as coordinator, and the rest as slaves.

Suppose, for example, that the starting place is London, and the cities to be visited
include New York, Sydney, Nairobi, and Tokyo. The coordinator might tell the first slave to
investigate all paths starting with London-New York, the second slave to investigate all paths
starting with London-Sydney, the third slave to investigate all paths starting with London-
Nairobi, and so on. All of these searches go on in parallel. When a slave is finished, it reports
back to the coordinator and gets a new assignment.

The algorithm can be applied recursively. For example, the first slave could allocate a
processor to investigate paths starting with London-New York-Sydney, another processor to
investigate London-New York-Nairobi, and so forth. At some point, of course, a cutoff is
needed at which a slave actually does the calculation itself and does not try to farm it out to
other processors.

www.manaraa.com

- 16 -

The performance of the algorithm can be greatly improved by keeping track of the best
total path found so far. A good initial path can be found by using the ‘‘closest city next’’
heuristic. Whenever a slave is started up, it is given the length of the best total path so far. If
it ever finds itself working on a partial path that is longer than the best-known total path, it
immediately stops what it is doing, reports back failure, and asks for more work. Initial exper-
iments have shown that 75 percent of the theoretical maximum speedup can be achieved using
this algorithm. The rest is lost to communication overhead.

Alpha-Beta Search

Another application that we have programmed in parallel using Amoeba is game playing using
the alpha-beta heuristic for pruning the search tree. The general idea is the same as for the
traveling salesman. When a processor is given a board to evaluate, it generates all the legal
moves possible starting at that board, and hands them off to others to evaluate in parallel.

The alpha-beta heuristic is commonly used in two-person, zero-sum games to prune the
search tree. A window of values is established, and positions that fall outside this window are
not examined because better moves are known to exist. In contrast to the traveling salesman
problem, in which much of the tree has to be searched, alpha-beta allows a much greater prun-
ing if the positions are evaluated in a well chosen order.

For example, on a single machine, we might have three legal moves A , B , and C at some
point. As a result of evaluating A we might discover that looking at its siblings in the tree, B
and C was pointless. In a parallel implementation, we would do all at once, and ultimately
waste the computing power devoted to B and C . The result is that much parallel searching is
wasted, and the net result is not that much better than a sequential algorithm on a single pro-
cessor. Our experiments running Othello (Reversi) on Amoeba have shown that we were
unable to utilize more than 40 percent of the total processor capacity available, compared to 75
percent for the traveling salesman problem.

PERFORMANCE

Amoeba was designed to be fast. Measurements show that this goal has been achieved. In this
section, we will present the results of some timing experiments we have done. These measure-
ments were performed on Sun 3/60s (20 MHz 68020s) using a 10 Mbps Ethernet. We meas-
ured the performance for three different configurations:

1. Two user processes running on Amoeba.
2. Two user processes running on Sun OS 4.0.3 but using the Amoeba primitives.
3. Two user processes running on Sun OS 4.0.3 and using Sun RPC.

The latter two were for comparison purposes only. We ran tests for the local case (both
processes on the same machine) and for the remote case (each process on a separate machine,
with communication over the Ethernet). In all cases communication was from process to pro-
cess, all of which were running in user mode outside the kernel. The measurments represent
the average values of 100,000 trials and are highly reproducible.

For each configuration (pure Amoeba, Amoeba primitives on UNIX, Sun RPC on
UNIX), we tried to run three test cases: a 4-byte message (1 integer), an 8 Kbyte message, and
a 30 Kbyte message. The 4-byte message test is typical for short control messages, the 8-
Kbyte message is typical for reading a medium-sized file from a remote file, and the 30-Kbyte

www.manaraa.com

- 17 -

test is the maximum the current implementation of Amoeba can handle. Thus, in total we
should have 9 cases (3 configurations and 3 sizes). However, the standard Sun RPC is limited
to 8K, so we have measurements for only eight of them. It should also be noted that the stan-
dard Amoeba header has room for 8 bytes of data, so in the test for 4 bytes, a only a header
was sent and no data buffer. On the other hand, on the Sun, a special optimization is available
for the local case, which we used.

In Fig. 5 we give the delay and the bandwidth of these eight cases, both for local
processes (two distinct processes on the same machine) and remote processes (processes on
different machines). The delay is the time as seen from the client, running as a user process,
between the calling of and returning from the RPC primitive. The bandwidth is the number of
data bytes per second that the client receives from the server, excluding headers. The meas-
urements were done for both local RPCs, where the client and server processes were running
on the same processor, and for remote RPCs over the Ethernet.

Delay (msec) Bandwidth (Kbytes/sec)

case 1 case 2 case 3 case 1 case 2 case 3

(4 bytes) (8 Kb) (30 Kb) (4 bytes) (8 Kb) (30 Kb)
� ��� � ���

pure Amoeba local 0.5 2.0 5.6 7.4 4000 5232
� ��� � ���

pure Amoeba remote 1.1 11.1 37.4 3.5 721 783
� ��������������������������������� � ��� � ���

UNIX driver local 4.2 7.7 17.0 0.9 1039 1723
� ��� � ���

UNIX driver remote 5.1 26.7 88.6 0.8 300 331
� ��������������������������������� � ��� � ���

Sun RPC local 5.7 12.8 imposs. 0.7 625 imposs.
� ��� � ���

Sun RPC remote 6.7 24.6 imposs. 0.6 325 imposs.��
�
�
�
�
�
�
�
�
�
�
�
�

� ���
��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

� ���
��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

(a) (b)

Fig. 5. RPC between user processes in three common cases for three different systems. Local
RPCs are RPCs where the client and server are running on the same processor. (a) Delay in
msec. (b) Bandwidth in Kbytes/sec. The UNIX driver implements Amoeba RPCs and Amoeba
protocol under Sun UNIX.

The interesting comparisons in these tables are the comparisons of pure Amoeba RPC
and pure Sun OS RPC both for short communications, where delay is critical, and long ones,
where bandwidth is the issue. A 4-byte Amoeba RPC takes 1.1 msec, vs. 6.7 msec for Sun
RPC. Similarly, for 8 Kbyte RPCs, the Amoeba bandwidth is 721 Kbytes/sec, vs. only 325
Kbytes for the Sun RPC. The conclusion is that Amoeba’s delay is 6 times better and its
throughput is twice as good.

While the Sun is obviously not the only system of interest, its widespread use makes it a
convenient benchmark. We have looked in the literature for performance figures from other

www.manaraa.com

- 18 -

distributed systems and have shown the null-RPC latency and maximum throughput in Fig. 6.
� ���

System Hardware Implementation NotesNull RPC

in msec.

Throughput

in kbytes/s

Estimated

CPU MIPS
� �� ���

Amoeba Sun 3/60 1.1 783 3.0 Measured user-to-user

Cedar Dorado 1.1 250 4.0 Custom microcode

x-Kernel Sun 3/75 1.7 860 2.0 Measured kernel-to-kernel

V Sun 3/75 2.5 546 2.0 Measured user-to-user

Topaz Firefly 2.7 587 5.0 Consists of 5 VAX CPUs

Sprite Sun 3/75 2.8 720 2.0 Measured kernel-to-kernel

Mach Sun 3/60 11.0 ? 3.0 Throughput not reported
� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 6. Latency and throughput for some systems reported in the literature.

The RPC numbers for the other systems listed in Fig. 6. are taken from the following pub-
lications: Cedar [5], x-Kernel [19], Sprite [18], V [6], Topaz [22], and Mach [19].

The numbers shown here cannot be compared without knowing about the systems from
which they were taken, as the speed of the hardware on which the tests were made varies by
about a factor of 3. On all distributed systems of this type running on fast LANs, the protocols
are largely CPU bound. Running the system on a faster CPU (but the same network) definitely
improves performance, although not linearly with CPU MIPS because at some point the net-
work saturates (although none of the systems quoted here even come close to saturating it). As
an example, in an earlier paper [32] we reported a null RPC time of 1.4 msec, but this was for
Sun 3/50s. The current figure of 1.1 msec is for the faster Sun 3/60s.

In Fig. 6 we have not corrected for machine speed, but we have at least made a rough
estimate of the raw total computing power of each system, given in the fifth column of the
table in MIPS (Millions of Instructions Per Second). While we realize that this is only a crude
measure at best, we see no other way to compensate for the fact that a system running on a 4
MIPS machine (Dorado) or on a 5 CPU multiprocessor (Firefly) has a significant advantage
over slower workstations. As an aside, the Sun 3/60 is indeed faster than the Sun 3/75; this is
not a misprint.

Cedar’s RPC is about the same as Amoeba’s although it was implemented on hardware
that is 33 percent faster. Its throughput is only 30% of Amoeba’s, but this is partly due to the
fact that it used an early version of the Ethernet running at 3 megabits/sec. Still, it does not
even manage to use the full 3 megabits/sec.

The x-Kernel has a 10% better throughput than Amoeba, but the published measurements
are kernel-to-kernel, whereas Amoeba was measured from user process to user process. If the
extra overhead of context switches from kernel to user and copying from kernel buffers to user
buffers are considered, to make them comparable to the Amoeba numbers, the x-kernel pefor-
mance figures would be reduced to 2.3 msec for the null RPC with a throughput of 748
kbytes/sec when mapping incoming data from kernel to user and 575 kbytes/sec when copying
it (L. Peterson, private communication).

www.manaraa.com

- 19 -

Similiarly, the published Sprite figures are also kernel-to-kernel. Sprite does not support
RPC at the user level, but a close equivalent is the time to send a null message from one user
process to another and get a reply, which is 4.3 msec. The user-to-user bandwidth is 170
kbytes/sec [34].

V uses a clever technique to improve the performance for short RPCs: the entire message
is put in the CPU registers by the user process and taken out by the kernel for transmission.
Since the 68020 processor has eight 4-byte data registers, up to 32 bytes can transferred this
way.

Topaz RPC was obtained on Fireflies, which are VAX-based multiprocessors. The per-
formance obtained in Fig. 6 can only be obtained using several CPUs at each end. When only a
single CPU is used at each end, the null RPC time increases to 4.8 msec and the throughput
drops to 313 kbytes/sec.

The null RPC time for Mach was obtained from a paper published in May 1990 [19] and
applies to Mach 2.5, in which the networking code is in the kernel. The Mach RPC perfor-
mance is worse than any of the other systems by more than a factor of 3 and is ten times
slower than Amoeba. A more recent measurement on an improved version of Mach gives an
RPC time of 9.6 msec and a throughput of 250K bytes/sec (R. Draves, private communica-
tion).

Like Amoeba itself, the bullet server was designed with fast performance as a major
objective. Below we present some measurements of what has been achieved. The measure-
ments were made between a Sun 3/60 client talking to a remote Sun 3/60 file server equipped
with a SCSI disk. Figure 7 gives the performance of the bullet server for tests made with files
of 1 Kbyte, 16 Kbytes, and 1 Mbyte. In the first column the delay and bandwidth for read
operations is shown. Note that the test file will be completely in memory, and no disk access
is necessary. In the second column a create and a delete operation together is measured. In
this case, the file is written to disk. Note that both the create and the delete operations involve
disk requests,

Delay (msec) Bandwidth (Kbytes/sec)

File Size READ CREATE+DEL READ CREATE+DEL
� ��� � ���

1 Kbyte 2 50 427 20
� ��� � ���

16 Kbyte 20 84 788 191
� ��� � ���

1 Mbyte 1260 3210 813 319�
�
�
�
�
�
�

� ���
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

� ���
�
�
�
�
�
�
�

�
�
�
�
�
�
�

(a) (b)

Fig. 7. Performance of the Bullet file server for read operations, and create and delete opera-
tions together. (a) Delay in msec. (b) Bandwidth in Kbytes/sec.

The careful reader may have noticed that a user process can pull 813 kbytes/sec from the
bullet server (from Fig. 7), even though the user-to-user bandwidth is only 783 kbytes/sec
(from Fig. 5). The reason for this apparent descrepancy is as follows. As far as the clients are
concerned, the bullet server is just a black box. It accepts requests and gives replies. No user
processes run on its machine. Under these circumstances, we decided to move the bullet
server code into the kernel, since the users could not tell the difference anyway, and protection

www.manaraa.com

- 20 -

is not an issue on a free-standing file server with only 1 process. Thus the 813 kbyte/sec figure
is user-to-kernel for access to the file cache, whereas the 783 kbyte/sec one is user-to-user,
from memory-to-memory without involving any files. The pure user-to-kernel bandwidth is
certainly higher than 813 kbytes/sec, but some of it is lost to file server overhead.

To compare the Amoeba results with the Sun NFS file system, we have measured reading
and creating files on a Sun 3/60 using a remote Sun 3/60 file server with a 16 Mbyte of
memory running SunOS 4.0.3. The file server had the same type of disk as the bullet server,
so the hardware configurations were, with the exception of extra memory for NFS, identical to
those used to measure Amoeba. The measurements were made at night under a light load. To
disable local caching on the Sun 3/60 we locked the file using the Sun UNIX lockf primitive
while doing the read test. The timing of the read test consisted of repeated measurement of an
lseek followed by a read system call. The write test consisted of consecutively executing
creat , write and close. (The creat has the effect of deleting the previous version of the file.)
The results are depicted in Fig. 8.

Delay (msec) Bandwidth (Kbytes/sec)

File Size READ CREATE READ CREATE
� ��� � ���

1 Kbyte 20 101 50 10
� ��� � ���

16 Kbyte 47 186 340 86
� ��� � ���

1 Mbyte 2030 13350 504 77�
�
�
�
�
�
�

� ���
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

� ���
�
�
�
�
�
�
�

�
�
�
�
�
�
�

(a) (b)

Fig. 8. Performance of the Sun NFS file server for read and create operations. (a) Delay in
msec. (b) Bandwidth in Kbytes/sec.

Observe that reading and creating 1 Mbyte files results in lower bandwidths than for
reading and creating 16 Kbyte files. The Bullet file server’s performance for read operations
is two to three times better than the Sun NFS file server. For create operations, the Bullet file
server has a constant overhead for producing capabilities, which gives it a relatively better per-
formance for large files.

EVALUATION

In this section we will take a critical look at Amoeba and its evolution and point out some
aspects that we consider successful and others that we consider less successful. In areas where
Amoeba 4.0 was found wanting, we will make improvements in Amoeba 5.0, which is
currently under development. These improvements are discussed below.

One area where little improvement is needed is portability. Amoeba started out on the
680x0 CPUs, and has been easily moved to the VAX, NS 32016 and Intel 80386. The
Amoeba RPC protocol has also been implemented as part of MINIX [25] and as such is in
widespread use around the world.

www.manaraa.com

- 21 -

Objects and Capabilities

On the whole, the basic ideas of an object-based system has worked well. It has given us a
framework which makes it easy to think about the system. When new objects or services are
proposed, we have a clear model to deal with and specific questions to answer. In particular,
for each new service, we must decide what objects will be supported and what operations will
be permitted on these objects. This structuring technique has been valuable on many occa-
sions.

The use of capabilities for naming and protecting objects has also been a success. By
using cryptographically protected capabilities, we have a unique system-wide fixed length
name for each object, yielding a high degree of transparency. Thus it is simple to implement a
basic directory as a set of (ASCII string, capability) pairs. As a result, a directory may contain
names for many kinds of objects, located all over the world and windows can be written on by
any process holding the appropriate capability, no matter where it is. We feel this model is
conceptually both simpler and more flexible than models using remote mounting and symbolic
links such as Sun’s NFS. Furthermore, it can be implemented just as efficiently.

We have no experience with capabilities on huge systems (thousands of simultaneous
users). On one hand, with such a large system, some capabilities are bound to leak out,
compromising security. On the other hand, capabilities provide a kind of firewall, since a
compromised capability only affects the security of one object. Whether such fine-grained
protection is better or worse in practice than more conventional schemes for huge systems is
hard to say at this point.

We are also satisfied with the low-level user primitives. In effect there are only three
principal system calls, get� request, put� reply, and do� operation, each easy to understand. All
communication is based on these primitives, which are much simpler than, for example, the
socket interface in Berkeley UNIX, with its myriad of system calls, parameters, and options.

Amoeba 5.0 will use 256-bit capabilites, rather than the 128-bit capabilities of Amoeba
4.0. The larger Check field will be more secure against attack. Other security aspects will
also be tightened, including the addition of secure, encrypted communication between client
and server. Also, the larger capabilities will have room for a location hint which can be
exploited by the SWAN servers for locating objects in the wide-area network. Third, all the
fields of the new 256-bit capability will be aligned at 32-bit boundaries, which potentially may
give better performance.

Remote Procedure Call

For the most part, RPC communication is satisfactory, but sometimes it gives problems
[27]. In particular, RPC is inherently master-slave and point-to-point. Sometimes both of
these issues lead to problems. In a UNIX pipeline, such as:

pic file | eqn | tbl | troff >outfile

for example, there is no inherent master-slave relationship, and it is not at all obvious if data
movement between the elements of the pipeline should be read driven or write driven.

In Amoeba 4.0, when an RPC transfers a long message it is actually sent as a sequence of
packets, each of which is individually acknowledged at the driver level (stop-and-wait proto-
col). Although this scheme is simple, it slows the system down. In Amoeba 5.0 we will only
acknowledge whole messages, which will allow us to achieve higher bandwidths than shown

www.manaraa.com

- 22 -

in Fig. 6.

Because RPC is inherently point-to-point, problems arise in parallel applications like the
traveling salesman problem. When a process discovers a path that is better than the best
known current path, what it really wants to do is send a multicast message to a large number of
processes to inform all of them immediately. At present this is impossible, and must either be
simulated with multiple RPCs or finessed.

Amoeba 5.0 will fully support group communication using multicast. A message sent to
a group will be delivered to all members, or at least an attempt will be made. A higher-level
protocol has been devised to implement 100% reliable multicasting on unreliable networks at
essentially the same price as RPC (two messages per reliable broadcast). This protocol is
described in [12]. There are many applications (e.g., replicated data bases of various kinds)
for which reliable broadcasting makes life much simpler. Amoeba 5.0 will use this replication
facility to support fault tolerance.

Although not every LAN supports broadcasting and multicasting in hardware, when it is
available (e.g., Ethernet), it can provide an enormous performance gain for many applications.
For example, a simple way to update a replicated data base is to send a reliable multicast to all
the machines holding copies of the data base. This idea is obvious and we should have real-
ized it earlier and put it in from the start.

Although it has long since been corrected, in Amoeba 2.0 we made a truly dreadful deci-
sion to have asynchronous RPC. In that system the sender transmitted a message to the
receiver and then continued executing. When the reply came in, the sender was interrupted.
This scheme allowed considerable parallelism, but it was impossible to program correctly.
Our advice to future designers is to avoid asynchronous messages like the plague.

Memory and Process Management

Probably the worst mistake in the design of the Amoeba 4.0 process management mechanisms
was the decision to have threads run to completion, that is, not be pre-emptable. The idea was
that once a thread starting using some critical table, it would not be interrupted by another
thread in the same process until it logically blocked. This scheme seemed simple to under-
stand, and it was certainly easy to program.

Problems arose because programmers did not have a very good concept of when a pro-
cess blocked. For example, to debug some code in a critical region, a programmer might add
some print statements in the middle of the critical region code. These print statements might
call library procedures that performed RPCs with a remote terminal server. While blocked
waiting for the acknowledgement, a thread could be interrupted, and another thread could
access the critical region, wreaking havoc. Thus the sanctity of the critical region could be
destroyed by putting in print statements. Needless to say, this property was very confusing to
naive programmers.

The run-to-completion semantics of thread scheduling in Amoeba 4.0 also prevents a
multiprocessor implementation from exploiting parallelism and shared memory by allocating
different threads in one process to different processors. Amoeba 5.0 threads will be able to run
in parallel. No promises are made by the scheduler about allowing a thread to run until it
blocks before another thread is scheduled. Threads sharing resources must explicitly syn-
chronize using semaphores or mutexes.

Another problem concerns the lack of timeouts on the duration of remote operations.

www.manaraa.com

- 23 -

When the memory server is starting up a process, it uses the capabilities in the process descrip-
tor to download the code and data. It is perfectly legal for these capabilities to be for
somebody’s private file server, rather than for the bullet server. However, if this server is mal-
icious and simply does not respond at all, a thread in the memory server will just hang forever.
We probably should have included service timeouts, although doing so would introduce race
conditions.

Finally, Amoeba does not support virtual memory. It has been our working assumption
that memory is getting so cheap that the added complexity of virtual memory is not worth it.
Most workstations have at least 4M RAM these days, and will have 32M within a couple of
years. Simplicity of design and implementation and high speed have always been our goals, so
we really have not decided yet whether to implement virtual memory in Amoeba 5.0.

In a similar vein, we do not support process migration at present, even though the
mechanisms needed for supporting it already exist. Whether process migration for load
balancing is an essential feature or just another frill is still under discussion.

File System

One area of the system which we think has been eminently successful is the design of the file
server and directory server. We have separated out two distinct parts, the bullet server, which
just handles storage, and the directory server, which handles naming and protection. The bul-
let server design allows it to be extremely fast, while the directory server design gives a flexi-
ble protection scheme and also supports file replication in a simple and easy to understand
way. The key element here is the fact that files are immutable, so they can be replicated at
will, and copies regenerated if necessary.

The entire replication process takes place in the background (lazy replication), and is
entirely automatic, thus not bothering the user at all. We regard the file system as the most
innovative part of the Amoeba 4.0 design, combining high performance with reliability,
robustness, and ease of use.

An issue that we are becoming interested in is how one could handle databases in this
environment. We envision an Amoeba-based database system that would have a very large
memory for an essentially ‘‘in-core’’ database. Updates would be done in memory. The only
function of the disk would be to make checkpoints periodically. In this way, the immutability
of files would not pose any problems.

A problem that has not arisen yet, but might arise if Amoeba were scaled to thousands of
users is caused by the splitting of the directory server and file server. Creating a file and then
entering its capability into a directory are two separate operations. If the client should crash
between them, the file exists but is inaccessible. Our current strategy is to have the directory
server access each file it knows about once every k days, and have the bullet server automati-
cally garbage collect all files not accessed by anyone in n days (n >> k). With our current
setup and reliable hardware, this is not a problem, but in a huge, international Amoeba system
it might become one.

www.manaraa.com

- 24 -

Internetworking

We are also happy with the way wide-area networking has been handled, using server agents,
client agents, and the SWAN. In particular, the fact that the existence of wide-area network-
ing does not affect the protocols or performance of local RPCs at all is crucial. Many other
designs (e.g., TCP/IP, OSI) start out with the wide-area case, and then use this locally as well.
This choice results in significantly lower performance on a LAN than the Amoeba design, and
no better performance over wide-area networks.

One configuration that was not adequately dealt with in Amoeba 4.0 is a system consist-
ing of a large number of local area networks interconnected by many bridges and gateways.
Although Amoeba 4.0 works on these systems, its performance is poor, partly due to the way
port location and message handling is done. In Amoeba 5.0, we have designed and imple-
mented a completely new low-level protocol called the Fast Local Internet Protocol (FLIP),
that will greatly improve the performance in complex internets. Among other features, entire
messages will be acknowledged instead of individual packets, greatly reducing the number of
interrupts that must be processed. Port location is also done more efficiently, and a single
server agent can now listen to an arbitrary number of ports, enormously reducing the number
of quiescent server agents required in the gateways for large systems.

One unexpected problem that we had was the poor quality of the wide-area networks that
we had to use, especially the public X.25 ones. Also, to access some machines we often had to
traverse multiple networks, each with their own problems and idiosyncracies. Our only insight
to future researchers is not to blindly assume that public wide-area networks will actually
function correctly until this has been experimentally verified.

UNIX Emulation

The Amoeba 4.0 UNIX emulation consists of a library and a session server. It was written with
the idea of getting most of the UNIX software to work without too much effort on our part.
The price we pay for this approach is that we will never be able to provide 100% compatibil-
ity. For example, the whole concept of user-ids and group-ids is very hard to get right in a
capability-based system. Our view of protection is totally different.

Furthermore, Amoeba is essentially a stateless system. This means that various subtle
properties of UNIX relating to how files are shared between parent and child are virtually
impossible to get right. In practice we can live with this, but for someone who demanded
binary compatibility, our approach has some shortcomings.

Parallel Applications

Although Amoeba was originally conceived as a system for distributed computing, the
existence of the processor pool with 48 680x0 CPUs close together has made it quite suitable
for parallel computing as well. That is, we have become much more interested in using the
processor pool to achieve large speedups on a single problem. To program these parallel
applications, we are currently engaged in implementing a language called Orca [4].

Orca is based on the concept of globally shared objects. Programmers can define opera-
tions on shared objects, and the compiler and run time system take care of all the details of
making sure they are carried out correctly. This scheme gives the programmer the to ability to
atomically read and write shared objects that are physically distributed among a collection of
machines without having to deal with any of the complexity of the physical distribution. All

www.manaraa.com

- 25 -

the details of the physical distribution are completely hidden from the programmer. Initial
results indicate that almost linear speedup can be achieved on some problems involving branch
and bound, successive overrelaxation, and graph algorithms. For example, we have redone the
traveling salesman problem in Orca and achieved a ten-fold speedup with 10 processors (com-
pared to 7.5 using the non-Orca version described earlier). Alpha-beta search in Orca achieves
a factor of 6 speedup with 10 processors (compared to 4 without Orca). It appears that using
Orca reduces the communication overhead, but it remains true that for problems with many
processes and a high interaction rate (i.e., small grain size), there will always be a problem.

Performance

Performance, in general, has been a major success story. The minimum RPC time for Amoeba
is 1.3 msec between two user-space processes on Sun 3/60s, and interprocess throughput is
nearly 800 kbytes/sec. The file system lets us read and write files at about the same rate.

User Interface

Amoeba originally had a homebrew window system. It was faster than X-windows, and in our
view cleaner. It was also much smaller and easier to understand. For these reasons we
thought it would be easy to get people to accept it. We were wrong. Technical factors some-
times play second fiddle to political and marketing ones. We have abandoned our window
server and switched to X windows.

Security

An intruder capable of tapping the network on which Amoeba runs can discover capabilities
and do considerable damage. In a production environment some form of link encryption is
needed to guarantee better security. Although some thought has been given to a security
mechanism [26] it was not implemented in Amoeba 4.0.

Two potential security systems have been designed for Amoeba 5.0. The first version can
only be used in friendly environments where the network and operating system kernels can be
assumed secure. This version uses one-way ciphers and, with caching of argument/result
pairs, can be made to run virtually as fast as the current Amoeba. The other version makes no
assumptions about the security of the underlying network or the operating system. Like MIT’s
Kerberos [23] it uses a trusted authentication server for key establishement and encrypts all
network traffic.

We intend to install both versions and investigate the effects on performance of the sys-
tem. We are researching the problems of authentication in very large systems spanning multi-
ple organizations and national boundaries.

COMPARISON WITH OTHER SYSTEMS

Amoeba is not the only distributed system in the world. Other well-known ones include Mach
[1], Chorus [21], V [6], and Sprite [18]. Although a comprehensive comparison of Amoeba
with these would no doubt be very interesting, it is beyond the scope of this paper. Neverthe-
less, we would like to make a few general remarks.

The main goal of the Amoeba project differs somewhat from the goals of most of the
other systems. It was our intention to develop a new operating system from scratch, using the
best ideas currently available, without regard for backward compatibility with systems

www.manaraa.com

- 26 -

designed 20 years ago. In particular, while we have written a library and server that provide
enough UNIX compatibility that over 100 UNIX utilities run on Amoeba (after relinking with
a special library), 100% compatibility has never been a goal. Although from a marketing
standpoint, not aiming for complete compatibility with the latest version of UNIX may scare
off potential customers with large existing software bases, from a research point of view, hav-
ing the freedom to selectively use ideas from UNIX is a plus. Some other systems take a dif-
ferent viewpoint.

Another difference with other systems is our emphasis on Amoeba as a distributed sys-
tem. It was intended from the start to run on a large number of machines. One comparison
with Mach is instructive on this point. Mach uses a clever optimization to pass messages
between processes running on the same machine. The page containing the message is mapped
from the sender’s address space to the receiver’s address space, thus avoiding copying.
Amoeba does not do this because we consider the key issue in a distributed system the com-
munication speed between processes running on different machines. That is the normal case.
Only rarely will two processes happen to be on the same physical processor in a true distri-
buted system, especially if there are hundreds of processors, so we have put a lot of effort into
optimizing the distributed case, not the local case. This is clearly a philosophical difference.

CONCLUSION

The Amoeba project has clealy demonstrated that it is possible to build an efficient, high-
performance distributed operating system on current hardware. The object-based nature of the
system, and the use of capabilities provides a unifying theme that holds the various pieces
together. By making the kernel as small as possible, most of the key features are implemented
as user processes, which means that the system can evolve gradually as needs change and we
learn more about distributed computing.

Amoeba has been operating satisfactorily for several years now, both locally and to a lim-
ited extent over a wide-area network. Its design is clean and its performance is excellent. By
and large we are satisfied with the results. Nevertheless, no operating system is ever finished,
so we are continually working to improve it. Amoeba is now available. For information on
how to obtain it, please contact the first author (Tanenbaum), preferably by electronic mail.

REFERENCES

[1] Accetta, M., Baron, R., Bolosky W., Golub, D., Rashid, R., Tevanian, A., and Young, M.
Mach: A New Kernel Foundation for UNIX Development. Proceedings of the Summer
Usenix Conference , Atlanta, GA, July 1986.

[2] Baalbergen, E.H, Verstoep, K., and Tanenbaum, A.S. On the Design of the Amoeba Con-
figuration Manager. Proc. 2nd Int’l Workshop on Software Config. Mgmt. , ACM, 1989.

[3] Bal, H.E., Van Renesse, R., and Tanenbaum, A.S. Implementing Distributed Algorithms
using Remote Procedure Call. Proc. Nat. Comp. Conf. , AFIPS, 1987. pp. 499-505.

[4] Bal, H.E., and Tanenbaum, A.S. Distributed Programming with Shared Data, IEEE Conf.
on Computer Languages , IEEE, 1988, pp. 82-91.

www.manaraa.com

- 27 -

[5] Birrell, A.D., and Nelson, B.J. Implementing Remote Procedure Calls, ACM Trans. Com-
put. Systems 2, (Feb. 1984) pp. 39-59.

[6] Cheriton, D.R. The V Distributed System. Comm. ACM 31, (March 1988), pp. 314-333.

[7] Dalal, Y.K. Broadcast Protocols in Packet Switched Computer Networks. Ph.D. Thesis,
Stanford Univ., 1977.

[8] Dennis, J., and Van Horn, E. Programming Semantics for Multiprogrammed Computation.
Commun. ACM 9, (March 1966), pp. 143-155.

[9] Evans, A., Kantrowitz, W., and Weiss, E. A User Authentication Scheme Not Requiring
Secrecy in the Computer. Commun. ACM 17, (Aug. 1974), pp. 437-442.

[10] Feldman, S.I. Make—A Program for Maintaining Computer Programs. Software—
Practice and Experience 9, (April 1979) pp. 255-265.

[11] Johnson, S.C. Yacc Yet Another Compiler Compiler. Bell Labs Technical Report, Bell
Labs, Murray Hill, NJ, 1978.

[12] Kaashoek, M.F., Tanenbaum, A.S., Flynn Hummel, S., and Bal, H.E. An Efficient Reli-
able Broadcast Protocol. Operating Systems Review , vol. 23, (Oct 1989), pp. 5-19.

[13] Lawler, E.L., and Wood, D.E. Branch and Bound Methods A Survey. Operations
Research 14, (July 1966), pp. 699-719.

[14] Marsland, T.A., and Campbell, M. Parallel Search of Strongly Ordered Game Trees.
Computing Surveys 14, (Dec. 1982), pp. 533-551.

[15] Mullender, S.J., van Rossum, G., Tanenbaum, A.S., van Renesse, R., van Staveren, J.M.
Amoeba — A Distributed Operating System for the 1990s. IEEE Computer 23, (May
1990), pp. 44-53.

[16] Mullender, S.J., and Tanenbaum, A.S. The Design of a Capability-Based Distributed
Operating System. Computer Journal 29, (Aug. 1986), pp. 289-299.

[17] Mullender, S.J., and Tanenbaum, A.S. A Distributed File Service Based on Optimistic
Concurrency Control. Proc. Tenth Symp. Operating System Principles , (Dec. 1985), pp.
51-62.

[18] Ousterhout, J.K., Cherenson, A.R., Douglis, F., Nelson, M.N., and Welch, B.B. The
Sprite Network Operating System. IEEE Computer 21, (Feb. 1988), pp. 23-26.

[19] Peterson, L., Hutchinson, N., O’Malley, S., and Rao, H. The x-kernel: A Platform for
Accessing Internet Resources. IEEE Computer 23 (May 1990), pp. 23-33.

[20] Pu, C., Noe, J.D., Proudfoot, A. Regeneration of Replicated Objects: A Technique and its

www.manaraa.com

- 28 -

Eden Implementation. Proc. 2nd Int’l Conf. on Data Eng. , (Feb. 1986), pp. 175-187.

[21] Rozier. M, Abrossimov. V, Armand. F, Boule. I, Gien. M, Guillemont. M, Hermann. F,
Kaiser. C, Langlois. S, Leonard, P., and Neuhauser. W. CHORUS Distributed Operating
System. Computing Systems 1 (Fall 1988), pp. 299-328.

[22] Schroeder, M.D., and, Burrows, M. Performance of the Firefly RPC. Proc. Twelfth ACM
Symp. of Oper. Syst. Prin. , ACM, (Dec. 1989), pp. 83-90.

[23] Steiner, J.G., Neuman, C., and Schiller, J.I. Kerberos An Authentication Service for
Open Network Systems. Proceedings of the Usenix Winter Conference , USENIX Assoc.,
(1988), pp. 191-201.

[24] Stonebraker, M. Operating System Support for Database Management. Commun. ACM
24, (July 1981), pp. 412-418.

[25] Tanenbaum, A.S. A UNIX Clone with Source Code for Operating Systems Courses.
Operating Syst. Rev. 21, (Jan. 1987), pp. 20-29.

[26] Tanenbaum, A.S., Mullender, S.J., and Van Renesse, R. Using Sparse Capabilities in a
Distributed Operating System. Proc. Sixth International Conf. on Distr. Computer Sys-
tems , IEEE, 1986.

[27] Tanenbaum, A.S., and Van Renesse, R. A Critique of the Remote Procedure Call Para-
digm. Proc. Euteco ’88 (1988), pp. 775-783.

[28] Tanenbaum, A.S., and Van Renesse, R. Distributed Operating Systems. Computing Sur-
veys 17, (Dec. 1985), pp. 419-470.

[29] Van Renesse, R. Tanenbaum, A.S., and Wilschut, A. The Design of a High-Performance
File Server. Proc. Ninth Int’l Conf. on Distr. Comp. Systems , IEEE, (1989a), pp. 22-27.

[30] Van Renesse, R., Tanenbaum, A.S., Van Staveren, H., and Hall, J. Connecting RPC-
Based Distributed Systems Using Wide-Area Networks. Proc. Seventh Int’l Conf. on
Distr. Comp. Systems , IEEE, (1987), pp. 28-34.

[31] Van Renesse, R., Van Staveren, H., and Tanenbaum, A.S. Performance of the Amoeba
Distributed Operating System. Software—Practice and Experience 19, (March 1989b)
pp. 223-234.

[32] Van Renesse, R., Van Staveren, H., and Tanenbaum, A.S. Performance of the World’s
Fastest Distributed Operating System. Operating Systems Review 22, (Oct. 1988), pp.
25-34.

[33] Van Rossum, G. AIL—A Class-Oriented Stub Generator for Amoeba. Proc. of the
Workshop on Experience with Distributed Systems , (J. Nehmer, ed.), Springer Verlag,
1990 (in preparation).

www.manaraa.com

- 29 -

[34] Welch, B.B. and Ousterhout, J.K. Pseudo Devices: User-Level Extensions to the Sprite
File System. Proc. Summer USENIX Conf. , pp. 37-49, June 1988.

